首页> 外文OA文献 >Determining the veracity of rumours on Twitter
【2h】

Determining the veracity of rumours on Twitter

机译:确定Twitter上谣言的真实性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

While social networks can provide an ideal platform for upto-date information from individuals across the world, it has also proved to be a place where rumours fester and accidental or deliberate misinformation often emerges. In this article, we aim to support the task of making sense from social media data, and specifically, seek to build an autonomous message-classifier that filters relevant and trustworthy information from Twitter. For our work, we collected about 100 million public tweets, including users' past tweets, from which we identified 72 rumours (41 true, 31 false). We considered over 80 trustworthiness measures including the authors' profile and past behaviour, the social network connections (graphs), and the content of tweets themselves. We ran modern machine-learning classifiers over those measures to produce trustworthiness scores at various time windows from the outbreak of the rumour. Such time-windows were key as they allowed useful insight into the progression of the rumours. From our findings, we identified that our model was significantly more accurate than similar studies in the literature. We also identified critical attributes of the data that give rise to the trustworthiness scores assigned. Finally we developed a software demonstration that provides a visual user interface to allow the user to examine the analysis.
机译:尽管社交网络可以为世界各地的个人提供最新信息的理想平台,但事实证明,社交网络是谣言不断恶化,偶然或故意的错误信息泛滥的地方。在本文中,我们旨在支持从社交媒体数据中得出有意义的任务,尤其是寻求构建一个自主的消息分类器,以过滤来自Twitter的相关和可信赖的信息。在我们的工作中,我们收集了大约1亿条公开推文,包括用户的过去发来的推文,从中我们发现了72条谣言(41条正确,31条错误)。我们考虑了80多种可信度衡量标准,包括作者的个人资料和过去的行为,社交网络连接(图表)以及推文本身的内容。我们针对这些措施运行了现代化的机器学习分类器,以在谣言爆发后的各个时间窗口内产生可信度得分。此类时间窗口很关键,因为它们可以帮助您深入了解谣言的进展。根据我们的发现,我们确定我们的模型比文献中的类似研究准确得多。我们还确定了导致分配的可信赖度分数的数据的关键属性。最后,我们开发了一个软件演示,该演示提供了可视的用户界面,允许用户检查分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号